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Abstract:

Aims:

This study aimed to conduct an exploratory analysis of the pharmacogenomic variants involved in ocular hypotensive drugs to understand the
individual differential response in an Afro-descendant population.

Background:

Glaucoma  is  the  leading  cause  of  irreversible  blindness  worldwide.  The  pharmacologic  treatment  available  consists  of  lowering  intraocular
pressure by administering topical drugs. In Asian and Caucasian people, pharmacogenomic variants associated with the efficacy of these treatments
have been identified. However, in Afro-descendant populations, there is a profound gap in this knowledge.

Objective:

This study identified the pharmacogenomic variants related to ocular hypotensive efficacy treatment in Afro-descendant individuals from the
Archipelago of San Andres and Providence, Colombia.

Methods:

An analysis of whole-exome sequencings (WES), functional annotation, and clinical significance was performed for pharmacogenomic variants
reported in PharmGKB databases; in turn, an in silico available prediction analysis was carried out for the novel variants.

Results:

We identified six out of 18 non-synonymous variants with a clinical annotation in PharmGKB. Five were classified as level three evidence for the
hypotensive drugs; rs1801252 and rs1801253 in the ADRB1 gene and rs1042714 in the ADRB2 gene. These pharmacogenomic variants have been
involved in a lack of efficacy of topical beta-blockers and higher systolic and diastolic pressure under treatment with ophthalmic timolol drug. The
rs1045642 in the ABCB1 gene was associated with greater efficacy of treatments with latanoprost drug. Also, we found the haplotypes *17 for
CYP2D6 and *10 for CYP2C19; both related to reducing the enzyme activity to timolol drug metabolization. In addition, we observed 50 novel
potentially actionable variants; 36 synonymous, two insertion variants that caused frameshift mutations, and 12 non-synonymous, where five were
predicted to be pathogenic based on several pathogenicity predictions.

Conclusion:

Our results suggested that the pharmacogenomic variants were found to decrease the ocular hypotensive efficacy treatment in a Colombian Afro-
descendant population and revealed a significant proportion of novel variants with a potential to influence drug response.
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1. INTRODUCTION

Glaucoma  is  the  leading  cause  of  irreversible  blindness
worldwide. It is a group of optic neuropathies characterized by
changes in the optic nerve head and typical visual field defects
secondary to a progressive loss of retinal ganglion cells. The
etiology  of  this  disease  is  not  entirely  known.  Glaucoma  is
usually considered a multifactorial disease involving genetic,
vascular,  inflammatory,  and  oxidative  factors  in  its
pathogenesis.  The  most  critical  risk  factor  is  elevated
intraocular  pressure  (IOP),  although  this  is  not  enough  or
required  for  disease  development.  Other  risk  factors  include
advanced age, Afro-descendant or Hispanic ethnicity, positive
family  history,  and high myopia.  The available  therapies  are
based on reducing intraocular pressure through medications or
surgery.  Most  patients  are  treated  with  topical  ophthalmic
drugs,  including  first-line  prostaglandin-analogs  such  as
latanoprost,  travoprost,  and  bimatoprost,  followed  by  beta-
adrenergic  blocking  agents  (e.g.,  timolol  is  the  most
representative) [1]. Intraocular pressure response rates to these
drugs are known to vary according to the population analyzed.
For  example,  Camras  and  Hedman  [2]  conducted  a
comparative  study  between  latanoprost  and  timolol  in  the
North  American  population  and  found null-response  rates  of
20% and 31%, respectively; furthermore, these rates decreased
by  4.7%  and  1.6%  after  four  months.  Other  studies  that
evaluated  only  latanoprost  across  different  periods  reported
null-response rates of 4.1% in the Italian population [3], 11%
in  the  Spanish  population  [4],  and  31.8%  in  the  Japanese
population  [5].

Glaucoma  disproportionally  affects  Afro-descendant
populations  at  a  frequency  three  to  five  times  greater  than
European  populations,  and  its  onset  has  been  reported  at  a
younger  age,  with  a  more  severe  course  of  the  disease.
However, there is a gap in knowledge given the lack of studies
on  Afro-descendant  populations  that  contribute  to
understanding the susceptibility and adverse outcomes in this
ethnic group. Some reports point to a differential response to
hypotensive drugs. There was an observed inefficacy of topical
beta-blockers and rebound hypertension in healthy volunteers
in Nigeria. Other reports suggest a better therapeutic response
to travoprost than to latanoprost or timolol in Afro-descendant
patients [6 - 11].

Identifying  molecular  variants  associated  with  drug
responses  is  essential  in  precision  medicine  since  this  helps
maximize efficacy and minimize toxicity for each patient [12 -
14].

This research aimed to conduct a cross-sectional study to
identify  molecular  variants  in  genes  associated  with  the
response  to  hypotensive  drugs  for  primary  open-angle
glaucoma  (POAG)  in  Afro-descendant  individuals.  We
hypothesized that pharmacogenetic variants are associated with
differential  responses  to  ocular  hypotensive  drugs  in  Afro-
Colombian individuals.

* Address correspondence to this author at the TAOLab-CiBioFi, Department of
Biology,  Faculty  of  Natural  &  Exact  Sciences,  Universidad  del  Valle,  Cali,
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2. MATERIALS AND METHODS

A  cross-sectional  study  was  conducted  to  analyze
molecular variants in genes associated with the response to and
metabolism  of  the  ocular  hypotensive  drugs  latanoprost  and
timolol. For this, bioinformatics analysis was performed on ten
whole-exome sequences of Afro-descendant Raizal individuals
from  the  Archipelago  of  San  Andres  and  Providence,
Colombia,  in  August  2019.

The  study  sample  size  was  determined  based  on  the
participants' signed informed consent for the project “Analysis
of exomes of patients with glaucoma in the Raizal population
of  the  archipelago  of  San  Andres  and  Providence”  and  the
ethical  approval  act  #106-019  granted  by  the  Human  Ethics
Institutional  Review  Committee  (CIREH)  of  the  Faculty  of
Health  of  Universidad  del  Valle.  The  study  was  conducted
according to the Helsinki Declaration, as revised in 2013.

Functional  annotation  and  clinical  significance  were
performed for the variants reported in databases; in turn, an in
silico available prediction analysis was carried out for the non-
evaluated  variants.  The  frequencies  of  these  variants  were
compared with those present in other populations worldwide.
Molecular  variant  annotation  was  performed  based  on
alternative allele frequency (AAF), type of variation, clinical
annotation, and functional prediction.

2.1. DNA Extraction and Sequencing

Peripheral  blood  samples  were  obtained  through  finger-
pricking.  According to  the  manufacturer's  instructions,  DNA
extraction was done using the QIAmp® DNA Blood Maxi kit
(QIAGEN®). Exome sequencing was done on DNA samples
that met the following quality criteria: concentration >10 ng/µl
and  A260/280  ratio  of  1.7  by  spectrophotometry  on  a
Nanodrop® ND-2000c (Thermo Scientific®). Exome capture
and  enrichment  were  done  using  the  SureSelect  V6  library
preparation  kit,  and  sequencing  was  performed  on  Illumina
NovaSeq  600  equipment  at  100X  depth  to  address  potential
sources of bias.

2.2. Read Mapping and Molecular Variant Calling

Read quality control was evaluated using FastQC software
[15]. Reads with more than 20% of bases with a quality score
below 30 were discarded. The short reads were mapped to the
GRCh38 reference genome using BWA-mem. SAM to BAM
format conversion was done using GATK 4.1.6 [16], followed
by SNP variant calling using HaplotypeCaller. Next, BED tools
were used to filter variants in candidate genes [17], which were
selected  based  on  a  literature  review  and  database  search
focused  on  potentially  associated  variants  according  to  the
Pharmacogenomics Knowledge Base (PharmGKB) [18].

2.3. Annotation and Functional Prediction

Molecular  variant  annotation  was  performed  based  on
alternative allele frequency (AAF), type of variation, clinical
annotation, and functional prediction, among other information
obtained from WANNOVAR [19]. The haplotypes and alleles
for the CYP2D6 gene were manually assessed by visualizing
the  VCF  file  on  GenomeBrowse  and  comparing  the  data
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against PharmVar [20]. An allele frequency was calculated by
dividing the number of times the allele of interest was observed
in a population by the total number of copies of all the alleles
at that genetic locus in the population. The CADD server was
used to predict potentially deleterious molecular variants (value
>20). Furthermore, the SIFT, PolyPhen, and Mutation Assessor
server
(https://useast.ensembl.org/info/genome/variation/prediction/pr
otein_function.html) were also used.

2.4. Copy Number Variation

Copy number variation (CNV) for the CYP2D6 gene was
determined using the BAM file as input [21].

3. RESULTS

From  the  10  participants,  56  molecular  variants  were
identified in 20 analyzed genes. 36 variants were synonymous,
followed  by  18  non-synonymous,  and  a  small  number  of
insertion  variants  caused  frameshift  mutations  [2]  (Fig.  1).

The AAF of the molecular variants was compared with the
data of seven populations from the 1000 Genomes Project and
gnomAD. The results are shown by a heatmap and dendrogram
reconstructed using Euclidean distances as  similarity metrics
(Fig. 2). The clustering pattern indicates that the study samples
are  similar  to  the  populations  of  African  descent,  showing  a
clear separation from the others.

Fig. (1). Distribution of the type of SNV variant identified.

Fig. (2). Heat map of the frequencies for the alternate allele of the molecular variants identified in the candidate genes compared to eight other
populations.

https://useast.ensembl.org/info/genome/variation/prediction/protein_function.html
https://useast.ensembl.org/info/genome/variation/prediction/protein_function.html
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The non-synonymous molecular variants with no reported
clinical  associations  were  scored  according  to  five  in  silico
functional  prediction  servers  (Table  1).  The  CADD  server
identified five potentially deleterious molecular variants (value
>20). Furthermore, the SIFT server predicted three deleterious
molecular  variants,  PROVEAN  and  PolyPhen  servers
identified  two,  and  MutationAssessor  predicted  one  variant.

A  total  of  six  variants  with  reported  clinical  association
were  found  in  five  of  the  genes  evaluated,  including  three
variants  associated  with  increased  drug  efficacy,  two  with
reduced  drug  efficacy,  and  one  with  toxicity  (Table  2).
Compared to the reference populations, these variants showed
lower  frequencies  of  the  alternative  alleles  associated  with
differential therapeutic responses in all variants except for the

ABCC4 gene (Fig. 3).

The assignment of metabolic phenotypes for the CYP2D6
gene  was  not  possible  due  to  ambiguous  read  mapping  in
certain  gene  regions  containing  the  alleles  that  define  the
haplotypes  of  metabolic  phenotypes.  Likewise,  copy number
variant  calling  was  also  affected  since  the  algorithm used  in
CONIFER  depends  on  calculated  depth  values  for  different
exons; therefore, ambiguous read mapping can lead to incorrect
conclusions on the presence of multiple copies in the samples
analyzed.  The  read  assignment  pattern  was  constant  across
samples (Fig. 4). Exons 4 and 8 of the CYP2D6 gene showed
shallow read depth, and for exons 5 and 6, no reads could be
assigned.

Fig. (3). Relative frequencies of the clinically relevant molecular variants identified in comparison with those present in a population of ethnic
proximity.

Fig. (4). The pattern of assignment of readings found in the CYP2D6 gene.
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Table 1. Functional prediction in non-synonymous variants identified in ocular hypotensive drug response genes.

Chromosome Position Ref Alt Gene dbSNP SAI Alt
Frequency

PAC Alt
Frequency

SIFT
Score/Pred

Mutation
Assessor

Score/Pred

PROVEAN
Score/Pred

Polyphem
Score/Pred

CADD
Pred

1 161193676 G A ADAMTS4 rs147127522 0.15 0 0.0/D 3955/H -6.54/D 1.0/D 34
10 94781858 C T CYP2C19 rs6413438 0.25 0 0.007/D 3375/M -8.8/D 1.0/D 26.1
19 41352971 C G TGFB1 rs1800471 0.15 0.15 0.252/T 1.2/L -0.5/N 0.012/B 26.3

Note: Predictions with possible effects on protein function are in bold. Ref: Reference allele, Alt: Alternative allele, pred: Pathogenicity prediction, D: Deleterious, T:
Tolerated, H: High: L: Low, N: Neutral, B: Benign, SAI: San Andres Island population, PAC: Pacific colombian population, ALT: Alternative allele.

Table 2. Type of interaction and level of clinical significance for the identified SNPs.

Gen Variant Type of Interaction Drug Level of Evidence SAI Alt Frequency PAC Alt Frequency
ABCB1 rs1045642 Efficacy Latanoprost 3a 0.75 0.85
ABCC4 rs11568658 Inefficacy Latanoprost 3 0.05 0.03
ADRB1 rs1801252 Inefficacy Toxicity Timolol 3 0.05 0.38
ADRB1 rs1801253 Efficacy Beta-blocking agents 3 0.5 0.59
ADRB2 rs1042714 Efficacy Timolol 3b 0.85 0.97
CYP2D6 rs28371706 Substrate specific - 1A-4 0.13 0.00
The significance of the interaction was reported by McCarty et al. (2008) and Liu et al. (2016). Based on this, the equivalence of the level of evidence according to
PharmGKB was performed.
SAI = San Andres Island population, PAC = Pacific colombian population, ALT = Alternative allele

4. DISCUSSION

The  Colombian  population  comprises  Amerindian,
European, and African descent [22]. Some genetic studies on
the  population,  such  as  the  one  conducted  by  Lamprea  [23],
indicate  that  the  Raizal  populations  of  the  San  Andres  and
Providence  islands  are  more  like  the  Caribbean  Anglo-
speaking  population.  This  can  be  expected  since  these
populations  share  a  history  of  slavery  and  colonization  by
Great Britain in the different islands of the Caribbean [24]. Our
results agree with this fact and can be observed by the clusters
generated between African and Raizal study populations. The
absence  of  Latin  and  Anglo-American  people  in  the  cluster
analysis  was  due  to  the  limited  molecular  data  on  the
Colombian people in the 1000 Genomes project. Currently, the
only  data  available  corresponds  to  a  population  of  primarily
European  origin  from  Antioquia  in  the  Colombian  Andean
region [25, 26].

Based  on  the  complete  exome  characterization,  we
evaluated  non-synonymous  variants  since  these  can  affect
protein  function  by  active  site  modifications  or  structural
destabilization  [27].  These  molecular  variants  accounted  for
32% of the total variants identified (Fig. 1).

In  silico  functional  prediction  analysis  using  different
bioinformatics  servers  was  done  to  establish  the  possible
impact of the molecular variants on the encoded proteins [27,
28].  Five  out  of  six  clinical  annotations  in  PharmGKB were
classified as level 3 evidence for the studied hypotensive drugs.
These  associations  are  not  robust  enough  for  clinical
applications  since  they  were  based  on  a  single  unreplicated
study on variant-drug combinations [29].

Regarding  the  possible  effects  of  the  molecular  variants
identified in genes associated with differential drug response,
we found that variant rs1801252 (A>G) in the ADRB1 gene is
involved  in  a  lack  of  efficacy  of  topical  beta-blockers  and

higher  systolic  and  diastolic  pressure  under  treatment  with
ophthalmic timolol [30]. The adrenergic receptors ADRB1 and
ADRB2  belong  to  a  large  superfamily  of  G-protein-coupled
receptors  and  are  the  main  targets  of  beta-adrenergic
antagonists [31]. Moreover, for variants rs1801253 in ADRB1
(G>C) and rs1042714 (G>C) in ADRB2, homozygous carriers
(CC)  have  been  associated  with  a  higher  probability  of
intraocular pressure reduction with beta-blockers [31, 32]. In
the  Raizal  population  of  San  Andres  and  Providence,  the
homozygote  frequencies  were  0.3  and  0.7,  respectively.  All
molecular  variants  observed  for  these  genes  were  found  at  a
lower  frequency  than  in  Africans;  therefore,  these  should  be
considered when evaluating the differential response to timolol
in the study population.

ATP-dependent  transporters  (ABC)  are  associated  with
various  endogenous  and  exogenous  molecules  of  different
nature.  ABC transporters  have  been  suggested  as  a  potential
early  biomarker  in  glaucoma  due  to  their  involvement  in
chronic  vascular  dysregulation,  a  common  phenomenon  in
these  patients  [33].  These  transporters  are  crucial  in  drug
efflux; they mediate multi-resistance processes and differential
responses  to  many  drugs.  In  the  study  group,  two  molecular
variants  were  detected;  rs1045642  (C<T)  in  ABCB1  and
rs11568658 in ABCC4 (C>T). The variant in the ABCB1 gene
is  associated  with  greater  efficacy  of  treatments  with
latanoprost,  while  its  genotype  TT  confers  greater
susceptibility  to  POAG  [34].

Our results showed a lower minor allele frequency (0.75)
than  in  the  African  population  (0.85).  The  homozygous
genotype  TT  was  present  in  50%  of  the  study  individuals.
Moreover, genotype CT of the variant in the ABCC4 gene has
been associated with a reduced latanoprost effect compared to
genotype  CC  [35].  In  this  study,  a  single  heterozygous
individual carried the variant, which agrees with its low global
frequency worldwide. It has not been reported in the African
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population, according to data from the 1000 Genomes Project.
Despite  the  proven  importance  of  ABC  genes  in
pharmacokinetics,  some  authors  propose  that  the  impact  of
molecular variants on the bioavailability of drugs is lower than
other factors  that  regulate the expression and function of  the
transporter  [36].  Additionally,  most  studies  on  currently
annotated  molecular  variants  do  not  strongly  support  these
associations;  therefore,  new  studies  are  needed  to  propose
novel  variants  and  discard  or  keep  the  existing  ones.

P450 cytochrome (CYP) enzymes play a critical role in the
metabolism  of  a  broad  spectrum  of  drugs,  including  proton
pump inhibitors, antiepileptic agents, chemotherapeutic agents,
and  beta-adrenergic  antagonists.  Timolol  is  locally  well-
tolerated; however, up to 80% of the eye drop topically applied
can  reach  systemic  circulation  [37]  and  potentially  cause
cardiovascular and respiratory side effects. Therefore, a normal
function of the enzymes involved in their metabolism is highly
relevant,  especially  those  associated  with  drug  kinetics  and
plasma concentrations.  CYP2D6 and CYP2C19 are the main
metabolizers  of  timolol  [38].  These  enzymes  are
characteristically highly polymorphic, causing changes in their
expression levels and enzyme selectivity and activity. The two
molecular variants found in these genes, *17 for CYP2D6 and
*10 for CYP2C19, belong to the haplotypes known to reduce
the enzyme activity. rs2871706 in the CYP2D6 gene displays
substrate-specific  effects  and  can  reduce  protein  function
depending  on  the  molecule  it  binds  to  [39].  Moreover,  the
variant  predicted  by  CADD  for  CYP2C19  (rs6413438)  has
been associated with a deleterious effect on the expression of
the  enzyme  [40].  Both  variants  have  been  related  to
populations  of  African  descent  [41  -  44];  therefore,  clinical
studies  must  be  conducted  to  understand  the  role  of  these
variants  in  timolol  metabolism  and  their  implications  in
differential  drug  responses  in  these  populations.

The  characterization  of  the  CYP2D6  gene  in  this  study
presented several challenges due to the inherent limitations and
proposed  methodology.  First,  WES  excludes  non-coding
regions,  which  are  often  essential  to  define  haplotypes  and
metabolic  phenotypes;  therefore,  the  results  cannot  be
considered conclusive. Furthermore, the complex structure of
the  CYP2D6  gene  region  is  challenging  for  short-read
sequencing technologies, given the existence of pseudogenes,
repetitive  elements,  high  polymorphism  density,  etc  [45].
These  elements  cause  ambiguous  reading  assignments  since
reads can map to other homologous gene regions or no reading
assignment  because  of  high  alignment  penalties  and  high
polymorphism rates.  Overall,  these  issues  can  lead  to  biased
and inaccurate variant calling [46] that hinders the assessment
of  structural  variants,  such  as  CNV,  through  reading  depth-
based algorithms. Consequently, the inconsistencies in reading
coverage  and  depth  observed  in  our  data  are  not  unexpected
(Fig. 4) and have been previously reported in other WES-based
studies [47].

Most molecular variants with functional impact were found
in  genes  that  are  associated  with  the  downstream cascade  of
latanoprost  action  despite  not  directly  participating  in  drug
kinetics or dynamics. These genes are related to extracellular
matrix remodeling and degradation; the latter is essential to the

mechanism  of  action  of  latanoprost  to  increase  the  aqueous
humor outflow through an unconventional (uveoscleral) route;
degradation of the extracellular matrix between ciliary muscle
fibers  [48].  The  variant  in  the  MMP17  gene  obtained  a  high
prediction  value  by  CADD.  This  matrix  metalloproteinase
activates aggrecanase 1 (ADAMTS4), which plays an essential
role  in  the  degradation  of  glycosaminoglycans  of  the
extracellular matrix [48, 49]. A variant in ADAMTS4 was also
predicted to  affect  its  protein  function.  In  addition,  a  variant
with the prediction of functional impact was identified in the
TGF-β1  gene,  which  has  been  associated  with  an  imbalance
between  matrix-degrading  enzymes  (metalloproteinases)  and
their  inhibitors  (TIMP),  promoting  an  extracellular  stiffness
matrix at  the outflow pathways [50].  Lastly,  a variant with a
possible functional impact on EGFR could be associated with
side effects, such as trichomegaly, after the administration of
latanoprost because the drug-receptor interaction of latanoprost
with ADRB can cause transactivation of EGFR receptors [51].
Therefore, a change in protein function can lead to secondary
dermatological effects [52].

Despite  representing  the  most  remarkable  genomic
diversity  globally,  African  communities  are  strongly
underrepresented in genomic databases, and clinical research
on these populations is limited [53]. This leads to significant
limitations  and  challenges  in  developing  and  interpreting
studies  such  as  this  one.  As  previously  mentioned,  for
CYP2D6, read mapping to a reference genome can introduce a
bias  that  underestimates  the  actual  variation  in  the  samples.
This  is  because  the  alignment  algorithm  systematically
penalizes  high  genetic  diversity  between  the  sample  and
reference genomes, termed allelic or reference bias [54]. In the
variant call, this type of bias can lead to calling variants only
because  the  reference  genome  displays  a  rare  allele  or,
conversely, not calling rare alleles because the reference shares
them. This bias can lead to emphasizing the reference genome's
properties  instead  of  the  widespread  properties  across  the
population [55]. The alternatives proposed to overcome these
biases  include  ethnicity  normalized  reference  genomes  [56]
and consensus genomes that seek to reflect the most common
alleles and molecular variants by replacing positions where the
reference  contains  rare  alleles.  Another  alternative  involves
graphic genomes [57], representing all possible polymorphisms
in  a  single  reference  genome.  On  this  basis,  studies  such  as
ours  that  describe  and  characterize  variation  contribute
substantially to this type of alternative and facilitate genomic
studies in these populations.

CONCLUSION

In conclusion, this study identified variations in the main
pharmacogenomics associated with anti-glaucomatous therapy
in an Afro-Colombian Raizal population. Our results suggested
that the pharmacogenomic variants were found to decrease the
ocular  hypotensive  efficacy  treatment  in  a  Colombian  afro-
descendant population and revealed a significant proportion of
new variants with a potential to influence drug response. Also,
we  described  the  characteristics  of  the  sample  regarding  the
frequency of its molecular variants compared to others based
on information in public databases. This comparison allowed
determining ethnicity-specific  associations of  the biomarkers



Molecular Variants in Genes The Open Ophthalmology Journal, 2022, Volume 16   7

analyzed in the study population. Furthermore, we highlighted
several  molecular  variants  that  have  not  been  evaluated  for
hypotensive drugs but could be contributing to differential drug
responses  in  these  communities.  These  findings  provide
opportunities  for  future  association  studies.  This  study
contributes  to  the  Raizal  community's  genomic  data  and
knowledge  of  glaucoma  pharmacogenetics.
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