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Abstract:
The retinal circulation is a specialized system vital for delivering oxygen and nutrients, regulating vascular tone, and
maintaining  a  stable  microenvironment  for  neurons,  glia,  and  blood  vessels.  In  diabetes,  chronic  hyperglycemia
induces oxidative stress, inflammation, and endothelial dysfunction, disrupting retinal microcirculation. This leads to
impaired vascular permeability, ischemia, and neovascularization, ultimately causing Diabetic Retinopathy (DR). The
most crucial factor in DR involves nitro-oxidative stress, characterized by increased Nitric Oxide (NO) production or
altered expression of Nitric Oxide Synthase (NOS) isoforms. These isoforms, critical for vascular homeostasis and
blood flow, generate Reactive Oxygen Species (ROS), such as the superoxide anion. ROS reacts with NO to form
peroxynitrite, a damaging molecule that modifies tyrosine residues in proteins, causing nitrotyrosine formation, DNA
damage,  and lipid  peroxidation.  These  processes  compromise  the  blood-optic  nerve  barrier,  exacerbating  retinal
damage. Emerging therapeutic strategies were aimed to modulate NOS isoforms by enhancing or inhibiting their
activity, supplementing cofactors, or reducing oxidative stress. Such approaches showed promise in mitigating DR
progression.  This  review explores  the  pathophysiological  mechanisms underlying DR,  focusing on nitro-oxidative
pathways, and highlights the therapeutic potential of targeting these mechanisms. Understanding these processes
could pave the way for innovative treatments to combat this debilitating condition.
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1. INTRODUCTION
The  retinal  circulation  is  a  highly  specialized  system

responsible for delivering oxygen and nutrients, regulating
vascular  tone,  and  maintaining  a  balanced  microenviron-
ment essential  for the proper functioning of  neurons,  glia,
and  blood  vessels  [1].  In  the  context  of  diabetes,  chronic
hyperglycaemia induces oxidative stress, inflammation, and
endothelial dysfunction, disrupting retinal microcirculation.
This  disruption contributes to  capillary  damage,  increased
vascular  permeability,  ischemia,  and  pathological  neovas-
cularization,  ultimately  leading  to  Diabetic  Retinopathy
(DR). Although the pathogenesis of DR remains under inves-

tigation, key contributors include oxidative and nitrosamine
stress,  characterized  by  elevated  Nitric  Oxide  (NO)  and
superoxide  production,  altered  expression  of  Nitric  Oxide
Synthase  (NOS)  isoforms,  and  imbalances  in  endogenous
antioxidant defences, all of which contribute to progressive
retinal injury [2].

NO  plays  a  crucial  role  in  regulating  blood  flow  and
tissue oxygenation, primarily through the activation of solu-
ble guanylate cyclase (sGC) and inhibition of mitochondrial
cytochrome c oxidase [3].  In addition,  NO exerts cytotoxic
effects  via  immune  cells  and  serves  as  an  endothelial-
derived  relaxing  factor  (EDRF).  It  is  synthesized  from  L-
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arginine  by  the  action  of  NOS  enzymes  through  an  enzy-
matic reduction of nitrate [4]. The physiological expression
of NOS has been documented in the retinal blood vessels of
mice, rats, and pigs [5, 6], with NOS mRNA identified in the
retinal vasculature of rodent models [7]. NO has also been
detected in various retinal cell types, including neurons, the
pigment  epithelium,  amacrine  and  ganglion  cells,  and
photoreceptor ellipsoids in both humans and animal models
[8, 9]. This broad distribution underscores its essential role
in  visual  function and its  involvement  in  diseases,  such as
DR and glaucoma, when dysregulated.

In  humans,  three  isoforms  of  NOS  have  been  charac-
terised: endothelial NOS (eNOS), neuronal NOS (nNOS), and
inducible NOS (iNOS) [10, 11]. These isoforms are encoded
by  distinct  genes  located  on  chromosomes  7,  12,  and  17,
respectively [12].  eNOS is  particularly important for regu-
lating  retinal  blood  flow  and  maintaining  vascular  homeo-
stasis  by  reducing  vascular  resistance,  inhibiting  platelet
aggregation,  and  preventing  smooth  muscle  proliferation
[11]. While nNOS is primarily involved in neurotransmission
and  synaptic  signaling  in  the  retina,  iNOS  is  typically  in-
duced by inflammatory stimuli and produces large quantities
of NO, which contribute to oxidative damage [5]. Unlike the
constitutive  and  calcium-dependent  activity  of  eNOS  and
nNOS, iNOS is calcium-independent and expressed predomi-
nantly during pathological inflammation [13]. eNOS activity
is  further  modulated by calcium-independent  mechanisms,
such  as  phosphorylation  at  specific  serine,  threonine,  and
tyrosine  residues  [13].  Vascular  endothelial  growth  factor
(VEGF)  can  also  activate  eNOS  via  the  Akt  signaling
cascade, a key mechanism for promoting angiogenesis [14].
The role of eNOS in angiogenesis has been demonstrated in
several  animal  models,  emphasizing  its  dual  role  in  both
physiological and pathological retinal vascular processes

2. METHODOLOGY
To  ensure  transparency  and  scientific  rigor,  we  con-

ducted a narrative review of the literature on nitro-oxidative
mechanisms and therapeutic strategies in Diabetic Retino-
pathy  (DR).  A  comprehensive  literature  search  was  per-
formed  using  PubMed,  Scopus,  and  Web  of  Science  data-
bases up to May 2025. Search terms included combinations
of  the  following  keywords:  “diabetic  retinopathy,”  “nitric
oxide,”  “nitric  oxide  synthase,”  “oxidative  stress,”  “nitros-
amine  stress,”  “retinal  vasculature,”  and  “therapeutic  tar-
gets.” Boolean operators (AND/OR) were applied to optimize
search sensitivity and specificity.

We  included  original  research  articles,  reviews,  and
clinical  studies  published  in  English  that  directly  add-
ressed  the  role  of  NOS  isoforms,  oxidative/nitrosamine
stress pathways, and related therapeutic interventions in
DR. Articles were screened based on titles and abstracts,
and full texts were reviewed to assess eligibility. Studies
lacking relevance to retinal pathophysiology or nitric oxide
signaling were excluded.

Selected  studies  were  analyzed  qualitatively,  with  a
focus on mechanistic insights, preclinical or clinical rele-
vance, and therapeutic outcomes. The findings were then
synthesized into thematic sections that highlight biological
mechanisms, pathophysiological relevance, and emerging

therapeutic approaches. Given the narrative nature of this
work, no meta-analytical techniques were employed.

2.1.  Pathophysiological  Effect  of  NO  and  NOS  in
Retinal Vascular Health

VEGF-induced  permeability  and  endothelial  precursor
cell mobilization are significantly impaired in eNOS-deficient
mice, suggesting a crucial role for eNOS in vascular deve-
lopment [15]. However, its exact function in retinal vascular
development remains unclear.  Min Ha et al.  demonstrated
that eNOS deficiency in mice results in growth retardation
and  delayed  retinal  vessel  development,  with  reduced  tip
cell  numbers  and  impaired  endothelial  proliferation  [13].
These  findings  highlight  eNOS as  vital  for  endothelial  cell
function and blood vessel  maturation during retinal  angio-
genesis.  All  three  NOS isoforms (eNOS,  nNOS,  and iNOS)
operate as homodimers,  catalyzing the oxidation of L-argi-
nine to produce NO, using molecular oxygen and NADPH as
essential  substrates  (Fig.  1)  [16].  L-arginine  availability,
regulated by arginine-metabolizing enzymes like arginase 1
and  2,  and  specific  transporters  for  arginine  uptake,  is
critical for NO synthesis and its downstream effects [17].

NOS isoforms require prosthetic groups, including heme
iron along with tetrahydrobiopterin (BH4) as a cofactor, to
stabilize  their  dimeric  structure  and  facilitate  electron
transfer  during  catalysis  [10,  18].  BH4  deficiency  causes
eNOS  “uncoupling,”  resulting  in  the  production  of  super-
oxide  instead  of  NO,  which  contributes  to  oxidative  stress
and  vascular  dysfunction  [19].  Hypoxia-induced  BH4
depletion disrupts eNOS activity, leading to increased super-
oxide generation and exacerbating vascular damage, such as
vasoobliteration  [20].  Conversely,  eNOS  supports  angio-
genesis and vascular recovery, underscoring its dual role in
retinal vascular diseases. NO also activates soluble guany-
late  cyclase  (sGC),  binding  to  its  heme  domain  and  en-
hancing  its  catalytic  activity  [18].  This  activation  converts
guanosine  triphosphate  (GTP)  into  cyclic  guanosine  mono-
phosphate (cGMP), a messenger involved in vasodilation and
platelet  aggregation  inhibition  [21].  The  NO-sGC-cGMP
pathway  plays  a  crucial  role  in  maintaining  vascular
homeostasis.

Furthermore,  NO  plays  an  essential  role  in  the  vaso-
dilatory mechanisms of  retinal  blood vessels.  Studies have
highlighted the involvement of cyclooxygenase (COX) meta-
bolites  in  endothelium-  and  NO-dependent  vasodilation
within  ocular  vasculature  [22].  In  vivo  research  on  rat
retinal  vessels  suggests  that  NO-mediated  vasodilation
involves the COX-1–prostacyclin (PGI2)–IP receptor pathway
through  cAMP signaling  [23].  These  findings  indicate  that
NO facilitates vasodilation in retinal blood vessels via dual
mechanisms: the sGC/cGMP and COX-dependent pathways,
demonstrating  its  multifaceted  regulatory  role  in  retinal
vascular function. Additionally, iNOS has been implicated in
cholinergic  vasodilation  within  the  rat  retina.  Berra  et  al.
demonstrated  that  amino  guanidine,  an  iNOS  inhibitor,
significantly attenuated vasodilation induced by carbachol, a
cholinergic agonist [24]. This response was mediated by M1
and  M3  muscarinic  acetylcholine  receptors,  which  were
expressed on retinal blood vessels and promoted NO release
via iNOS activation.
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Fig. (1). A diagram rof L-arginine metabolism. L-arginine undergoes conversion to L-ornithine and urea via arginase. Additionally, it is
metabolized by nitric oxide synthase (NOS) to produce L-citrulline and nitric oxide (NO). The concept was taken from the following source:
Shosha  E,  Fouda  AY,  Narayanan  SP,  Caldwell  RW,  Caldwell  RB.  Is  the  Arginase  Pathway  a  Novel  Therapeutic  Avenue  for  Diabetic
Retinopathy? J Clin Med. 2020 Feb 5;9(2):425.

These  findings  suggest  that  iNOS  contributes  to  choli-
nergic signaling pathways, playing a crucial role in regu-
lating retinal blood flow. Together, these studies expand
the  understanding  of  NO’s  involvement  in  both  endo-
thelium- and cholinergic-mediated vascular modulation in
the retina.

2.2. Nitro-oxidative Stress and Retinal Diseases
Nitro-oxidative  stress  is  a  critical  pathogenic  factor  in

numerous  retinal  diseases,  affecting  both  neurons  and
retinal  cells  [25].  It  involves  various  contributors,  notably
NOS and the nicotinamide adenine dinucleotide phosphate
oxidase (NOX) enzyme family. NOX enzymes consist of seven
isoforms (NOX1–5 and DUOX1–2), which facilitate the trans-
fer  of  electrons  from NADPH to  molecular  oxygen,  produ-
cing superoxide [26, 27]. Specific isoforms, including NOX1,
NOX2,  and  NOX4,  are  particularly  implicated  in  ischemic
retinopathy,  promoting  glial  activation,  vascular  inflam-
mation, and injury. Reactive oxygen species (ROS), such as
superoxide  anion,  interact  with  nitric  oxide  (NO)  to  form
peroxynitrite,  a  potent  reactive  nitrogen  species.  Reactive
nitrogen  species  (RNS)  are  highly  reactive  molecules  de-
rived  from  nitric  oxide  (NO),  including  peroxynitrite,  nit-
rogen dioxide, and S-nitrosothiols. Formed during oxidative
stress,  RNS  can  modify  proteins,  lipids,  and  DNA,  contri-
buting  to  cellular  injury.  In  diseases  like  DR,  excess  RNS
promotes inflammation, endothelial dysfunction, and neuro-
vascular damage. Peroxynitrite reacts with tyrosine residues
in  proteins,  leading  to  the  formation  of  nitrotyrosine,  a
stable  biomarker  of  nitrosamine  stress  [28].  Nitrotyrosine
accumulation contributes to DNA damage, protein dysfunc-
tion, and lipid peroxidation, which compromise cellular in-

tegrity and exacerbate oxidative damage (Fig. 2) [29]. These
processes disrupt the blood-optic nerve barrier, intensifying
retinal damage, particularly in ischemic and diabetic condi-
tions. Nitrotyrosine, a marker of nitro-oxidative stress, is ele-
vated in vitreous samples from diabetic retinopathy patients.
Its levels correlate with disease severity and inflammation,
making  it  a  promising  biomarker  for  assessing  oxidative
damage  and  monitoring  therapeutic  responses  [28,  29].

Additionally, NOX-derived ROS are pivotal in sustaining
chronic inflammation, as they amplify cytokine release and
glial activation. This creates a feedforward loop that perpe-
tuates tissue injury and impairs vascular repair mechanisms
in the retina [29]. Targeting NOX isoforms and modulating
nitro-oxidative stress pathways offer promising therapeutic
opportunities for retinal diseases characterized by ischemia
and neurovascular damage.

2.3. Role of NOS in Diabetic Retinopathy
Diabetes mellitus is associated with retinal vascular com-

plications, driven by elevated oxidative stress and impaired
NOS-mediated  vasodilation  [30].  The  precise  molecular
mechanisms remain poorly understood, and the effect of dia-
betes on COX-mediated vasodilation is yet to be elucidated.
DR is characterized by neuronal dysfunction and the break-
down of retinal vasculature, including alterations in vessel
diameter regulation and oxygenation [31]. As we described
earlier,  NO  plays  a  crucial  role  in  maintaining  vascular
homeostasis by mediating vasodilation and regulating retinal
blood  flow.  However,  under  pathological  conditions,  im-
paired NO production by eNOS and nNOS or excessive NO
generation  by  iNOS  disrupts  this  balance,  leading  to  vas-
cular complications and retinal damage.
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Fig. (2). The role of oxidative and nitrosative stress in the development of diabetic retinopathy. O2= superoxide; NOS = nitric oxide
synthase; ROS = reactive oxygen species; ONOO = peroxynitrite.

Nitro-oxidative  stress  and  hyperglycaemia  are  key
drivers of abnormal retinal microvascular changes [32]. Re-
duced  NO  bioavailability  and  increased  peroxynitrite  pro-
duction  lead  to  protein  nitration,  lipid  peroxidation,  and
DNA damage, ultimately inducing tissue and cellular injury
(Fig.  2)  [33].  Notably,  eNOS  uncoupling,  caused  by  BH4
depletion,  shifts  the  enzyme  from NO production  to  gene-
rating  ROS,  further  exacerbating  oxidative  stress,  making
BH4 a potential therapeutic target [34]. Studies showed that
human  and  murine  retinal  cells  exposed  to  high  glucose
levels exhibit increased NOS isoform expression (especially
iNOS), elevated NO levels, and heightened oxidative/nitro-
samine  stress  compared  to  normoglycemic  conditions  [11,
35, 36]. This contributes to leukostasis, heightened vascular
permeability,  and  neovascularization  in  DR.  Additionally,
NOX  enzymes  exacerbate  nitro-oxidative  stress  by  promo-
ting  vascular  permeability  and  pathological  angiogenesis,
highlighting their role in DR pathogenesis.

NADPH oxidase (NOX) enzymes also play a crucial role
in the formation of advanced glycation end-products (AGEs),
significantly  contributing  to  the  pathogenesis  of  diabetic
retinopathy  [37].  Chronic  hyperglycaemia  stimulates  NOX
activity, resulting in excessive ROS production. These ROS
accelerate the glycation of proteins and lipids, leading to the
formation  of  AGEs,  which  disrupt  retinal  function  and
homeostasis  [37].  AGEs  impair  endothelial  cell  integrity,
increasing  vascular  permeability  and  contributing  to  dia-
betic  macular  edema.  Furthermore,  AGEs  bind  to  their
receptor, activating signaling pathways that promote inflam-
mation,  oxidative  stress,  and  the  upregulation  of  VEGF,
thereby driving neovascularization. This feedforward cycle
exacerbates  retinal  damage  and  dysfunction.  The  pivotal
role of NOX enzymes in ROS generation and AGE formation
underscores their potential as therapeutic targets for miti-
gating the progression of diabetic retinopathy [38, 39].

Two  studies  investigated  the  role  of  iNOS  in  early  DR
using  iNOS  knockout  mice  with  streptozotocin  (STZ)-
induced  diabetes  [40].  Diabetic  wild-type  mice  exhibited
significant  retinal  abnormalities,  including  thinning  of  the
retina,  elevated  NO  levels,  increased  nitrated  proteins,

superoxide  production,  and  leukostasis,  compared  to  non-
diabetic controls. They also showed a higher prevalence of
acellular capillaries and pericyte ghosts, hallmarks of micro-
vascular  damage  in  DR.  These  pathological  changes  were
largely  prevented  in  iNOS  knockout  mice,  indicating  a
protective effect of iNOS deletion. However, iNOS deficiency
had  no  discernible  impact  on  the  function  of  the  ganglion
cell  layer,  suggesting  that  the  protective  role  of  iNOS
deletion  in  DR  is  specific  to  microvascular  pathology  and
does not extend to all aspects of retinal dysfunction.

The association between nNOS and DR has been exten-
sively studied. Early evidence of neuronal dysfunction was
observed in diabetic rats and human retinas, with aberrant
electroretinogram  (ERG)  responses  occurring  before  any
detectable vascular damage [41, 42]. Additionally, increased
retinal neuron apoptosis was identified as an early event in
DR, preceding vascular damage in both rodent models and
human cases [43]. Giove et al. investigated the role of nNOS
in  early  DR  by  examining  its  expression  and  activity  in
retinal neurons [44]. The study revealed a strong anatomical
correlation  between  increased  NO  production  and  nNOS
immunoreactivity in the retinal plexiform layers of diabetic
retinas. Although nNOS mRNA levels remained unchanged,
nNOS protein levels decreased, accompanied by alterations
in  its  subcellular  localization.  These  findings  indicate  that
heightened nNOS activity contributes to NO overproduction
in  retinal  neurons,  playing  a  significant  role  in  the  early
neuronal dysfunction observed in DR.

The association between eNOS gene polymorphisms and
an  increased  risk  of  DR  has  been  widely  discussed  in  the
literature [45, 46]. Polymorphisms in the eNOS gene, which
affect NO production, can impair endothelial function, lea-
ding to disrupted retinal blood flow and elevated oxidative
stress. These genetic variations contribute to microvascular
damage, inflammation, and neovascularization, exacerbating
DR progression. Shi et al. demonstrated that the eNOS 4a/b
polymorphism is a significant risk factor for DR in patients
with type 2 diabetes [45]. This polymorphism may serve as a
biomarker  for  early  screening  and  diagnosis  of  DR,  parti-
cularly in specific populations. The eNOS 4a/b polymorphism
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does  not  appear  to  increase  the  overall  risk  of  DR  in  the
general population, including Asians and Chinese patients,
but  the  4a  allele  specifically  increases  DR  risk  in  Cau-
casians.

Additionally,  this  polymorphism does  not  influence  the
DR subtype. The rs1799983 GT genotype has been identified
as  an  independent  risk  factor  for  DR  in  Greek  patients,
whereas the rs2070744 polymorphism showed no significant
association  [46].  Taverna  et  al.  highlighted  the  impact  of
T-786C and C774T eNOS polymorphisms on DR onset patt-
erns  in  Caucasians  with  type  1  diabetes  [47].  The  T-786C
variant was associated with early-onset DR in patients with
poor  glycaemic  control,  while  C774T  correlated  with  late-
onset  DR,  emphasizing  the  role  of  genetic  factors  in  DR
progression.  Additionally,  VEGF polymorphisms have been
identified  as  DR  risk  factors,  whereas  NOS2A  polymor-
phisms  have  been  shown  to  provide  a  protective  effect
against DR [48]. Cheema et al. also demonstrated that spe-
cific  eNOS  gene  polymorphisms  offer  protective  effects
against  DR  in  Asian  Indian  populations  [49].

eNOS is critical for maintaining vascular integrity in DR
[50].  Diabetic  eNOS-deficient  mice  exhibited  a  broader
spectrum of retinal vascular complications compared to age-
matched  controls,  including  increased  vascular  leakage,
indicative  of  compromised  blood-retinal  barrier  integrity,
and gliosis, reflecting elevated glial activation and retinitis
[50].  The  absence  of  eNOS  likely  impairs  NO  production,
which is essential for vascular homeostasis, leading to oxi-
dative stress and inflammation that exacerbate these patho-
logical changes. These results emphasize the protective role
of  eNOS  in  preventing  retinal  vascular  complications  in
diabetic  conditions.  Endothelial  dysfunction,  characterized
by impaired release of vasodilators and vasoconstrictors, is a
central  contributor  to  DR.  Connell  et  al.  investigated  the
impact  of  hyperglycaemia  on  eNOS  expression  and  NO
release in bovine retinal  endothelial  cells  under static and
flow conditions [51]. Hyperglycaemia significantly reduced
eNOS  expression  and  NO  release,  with  dose-dependent
decreases  observed  in  glucose-treated  cells  compared  to
osmotic  controls.  Furthermore,  both  acetylcholine-stimu-
lated  NO  release  and  flow-induced  NO  activity  were  mar-
kedly inhibited by glucose. These findings highlight the role
of hyperglycaemia in disrupting NO-mediated vascular regu-
lation,  leading  to  endothelial  dysfunction  and  impaired
vascular autoregulation—key features in the progression of
DR.

The  role  of  inducible  iNOS  and  the  bradykinin  type  1
receptor (B1R) in DR was investigated by Othman et al. [52].
Their  study  demonstrated  the  significant  contributions  of
iNOS  and  B1R  to  inflammation,  oxidative  stress,  and  vas-
cular  dysfunction  in  the  diabetic  retina.  Using  a  strepto-
zotocin-induced  diabetes  rat  model,  they  showed  that  a
selective iNOS inhibitor  effectively  reversed the increased
expression  of  inflammatory  markers,  reduced  vascular
permeability,  and  disrupted  the  localization  of  iNOS  and
B1R.  These  findings  suggest  a  mutual  amplification  loop
between iNOS and B1R, identifying the B1R–iNOS axis as a
promising therapeutic target for early intervention in DR.

The role of free radicals and NO dysregulation in DR has
been extensively studied. Abu El-Asrar et al. demonstrated
that increased NO production by inducible NOS contributes

to neurotoxicity and angiogenesis in DR [53]. Additionally,
Abu El-Asrar et al. identified the Stem Cell Factor (SCF)-c-
kit  signaling  pathway  as  a  driver  of  neovascularization  in
DR, highlighting increased expression of SCF, c-kit, eNOS,
and VEGF as key contributors to angiogenesis and oxidative
damage in disease progression [54]. Further clinical studies
corroborate the association between oxidative stress and DR
severity.  Elevated  NO  levels  in  the  aqueous  humor,  incr-
eased lipid peroxidation, and mitochondrial dysfunction have
also  been  observed  in  DR  patients,  providing  additional
evidence  of  oxidative  damage  in  disease  pathogenesis
[55-57].  These  findings  emphasize  the  pivotal  role  of  oxi-
dative  stress  and  NO  dysregulation  in  DR  progression,
highlighting  potential  therapeutic  targets.

2.4.  The  Association  of  Oxidative  Stress  and
Neurodegeneration in DR

Neurodegeneration  in  DR  is  intricately  linked  to  oxi-
dative  stress,  which  emerges  as  a  primary  pathological
mechanism triggered by chronic hyperglycemia [58]. In the
diabetic state, elevated glucose metabolism leads to exces-
sive production of reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS), surpassing the retina’s natural
antioxidant defense systems. This oxidative imbalance leads
to significant damage to retinal neurons, particularly gang-
lion and intraneuronal cells, through lipid peroxidation, DNA
fragmentation, and mitochondrial dysfunction [59]. Further-
more,  oxidative  stress  promotes  the  activation  of  inflam-
matory  pathways  and  retinal  glial  cells,  aggravating
neuronal loss and disrupting the neurovascular unit. Neuro-
degeneration and inflammation are thus critical early events
in the pathogenesis of DR. Experimental studies and clinical
evidence  underscore  the  need  for  early  intervention  tar-
geting  oxidative  damage  [60].  Promising  neuroprotective
strategies include combination therapies, such as citicoline
with  resveratrol,  duloxetine  with  N-acetylcysteine,  and
angiopoietin-2 inhibitors with CD5-2 [58]. These approaches
aim to preserve retinal  structure and function in  early  DR
and may offer new avenues for delaying disease progression
and preventing vision loss.

2.5. Therapeutic Targets of NOS in DR
Early  diagnosis  and  effective  treatment  can  delay  the

onset and progression of DR [61]. Therapeutic strategies tar-
geting NOS isoforms often involve modulating their activity
through  the  supplementation  of  cofactors  or  reducing  oxi-
dative stress. However, studies indicate that chronic admi-
nistration of L-arginine, the primary substrate for NOS, does
not  consistently  enhance  NO production  or  improve  endo-
thelial  function  [5].  Instead,  prolonged  L-arginine  supple-
mentation  increases  urea  and  L-ornithine  levels  without
significantly promoting NO synthesis (Fig. 1).  While short-
term  L-arginine  supplementation  improves  vascular  reac-
tivity in peripheral arterial disease (PAD), Wilson et al.  re-
ported no such benefits with long-term administration [62].
Arginase  competes  with  NOS  for  L-arginine,  limiting  NO
production  and  promoting  NOS  uncoupling,  where  NOS
generates superoxide anions instead of NO. Targeting argi-
nase activity has been proposed as a therapeutic strategy to
mitigate oxidative stress and restore NO balance. Blockade
of  vascular  arginase  may  improve  endothelial  function  in
retinal arterioles during the early stages of diabetes [63]. A
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study in diabetic pig coronary arterioles demonstrated that
impaired NO-mediated vasodilation was restored by the argi-
nase inhibitor (nor-NOHA) or L-arginine. Nor-NOHA blocks
arginase,  ensuring  L-arginine  availability  for  eNOS  and
preserving  NO  production  [64].

Hyperglycaemia significantly increases retinal arginase
activity and arginase 1 expression in diabetic microvascular
endothelial cells [65]. Elevated arginase 2 levels during the
ischemic  phase  of  oxygen-induced  retinopathy  (OIR)  coin-
cide with increased nitro-oxidative stress, iNOS expression,
impaired  vascular  repair,  and  vitreoretinal  neovasculari-
zation.  Deletion  of  arginase  2  mitigated  these  adverse
effects,  highlighting  its therapeutic  potential  [66]. Shosha
et al. highlighted the critical role of arginase 2 (A2) in neuro-
vascular injury following retinal ischemia in DR [67]. Using
A2-deficient  and  wild-type  (WT)  mice,  they  demonstrated
that ischemic insult significantly increased A2 expression in
WT retinas. Deletion of A2 markedly reduced ganglion cell
loss  and  ROS  production.  A2  deficiency  also  preserved
retinal  morphology  and  improved  retinal  function,  as  con-
firmed by electroretinography. These findings suggest that
A2  mediates  neurovascular  damage  in  ischemic  retinas,
identifying  A2  as  a  promising  therapeutic  target  for  miti-
gating retinal neurovascular injury.

Additionally, Edgar et al. demonstrated that sepiapterin,
a  precursor  of  tetrahydrobiopterin  (BH4),  increased  BH4
levels in Hyperoxia-exposed retinas, thereby enhancing NOS
activity. BH4 supplementation was shown to restore retinal
microvascular endothelial cell function and improve vascular
integrity by optimizing eNOS activity. These findings empha-
size the therapeutic potential  of  BH4 in maintaining endo-
thelial function and mitigating retinal vascular damage [20].

Resveratrol  is  a  promising therapeutic  agent  known to
reduce oxidative stress and enhance eNOS expression [68].
It  has  been  shown  to  upregulate  eNOS  in  vascular  endo-
thelial cells, supporting vascular homeostasis. Furthermore,
resveratrol protects against ischemia-induced retinal gang-
lion cell loss and endothelial dysfunction in murine retinas
by  mitigating  nitro-oxidative  stress,  likely  through  the
suppression  of  NOX2  upregulation  [69].

Betulinic acid has shown promising therapeutic effects
in addressing ischemic retinal  damage associated with DR
[70]. In a study, Betulinic acid (50 mg/kg/day) administered
to rat models significantly preserved retinal ganglion cells
and  optic  nerve  axons  compared  to  untreated  controls.
Additionally, it reduced ROS levels, improved vascular endo-
thelial function, and enhanced the expression of antioxidant
enzymes. These findings suggest that Betulinic acid protects
against ischemic retinal injury in DR by mitigating oxidative
stress and improving vascular function.

NOX inhibitors  are  emerging  as  promising  therapeutic
agents for mitigating ischemic and diabetic retinopathy due
to their critical role in reducing excessive ROS production, a
key  factor  in  these  conditions.  Synthetic  NOX  inhibitors,
such  as  GKT1  are  potent,  orally  active,  and  bioavailable,
specifically  targeting  NOX isoforms  [71,  72].  These  comp-
ounds have been shown to significantly lower ROS produc-
tion and VEGF-An expression in human retinal  endothelial
cells  exposed to  dimethyloxalylglycine [73].  NCT04569656
also  investigated  GKT137831,  a  NOX1/4  inhibitor,  for  its

anti-inflammatory effects in ischemic retinopathies, such as
diabetic  retinopathy.  In  a  rat  model,  GKT137831  reduced
leukocyte  adhesion,  glial  activation,  vascular  leakage,  and
the  expression  of  inflammatory  markers,  including  VEGF
and  MCP-1.  In  vitro,  it  suppressed  the  expression  of  ROS
and cytokines in retinal microglia, Müller cells, and neurons
under  hypoxic  conditions.  These  findings  suggest
GKT137831  may  protect  against  retinal  inflammation  and
oxidative damage, supporting its potential as a therapeutic
option for vision-threatening retinopathies.

Another  therapeutic  avenue  in  retinal  microvascular
disorders  involves  the  endocannabinoid  system  [74].  The
cannabinoid  receptor  CB2  plays  a  pivotal  role  in  immune
regulation,  although  its  neuronal  expression  in  the  retina
remains  uncertain.  CB2  expression  in  healthy  retinas  is
minimal but upregulated under pathological conditions. CB2
knockout  mice  exhibited  increased  a-wave  responses  and
altered  bipolar  cell  activity,  as  observed  through  electro-
retinogram recordings [74, 75]. Lipidomics analyses in these
knockout mice revealed modest reductions in cannabinoid-
related  lipids,  suggesting  that  CB2  may  influence  retinal
signaling  indirectly,  with  its  upregulation  primarily  asso-
ciated with DR.

The therapeutic potential  of  exendin-4,  a glucagon-like
peptide-1 (GLP-1) receptor agonist, has also been explored
in DR. Exendin-4 restores microvascular patency in ischemic
DR  through  the  GLP-1  receptor–eNOS  signaling  pathway,
enhancing  endothelial  NO  production,  vasodilation,  and
blood  flow  regulation  [76].  This  highlights  its  promise  in
improving tissue perfusion and regulating retinal  capillary
function.

Natural compounds, such as ginger and naringenin, have
demonstrated significant potential in managing DR and high
glucose-induced  ischemic  injury  [77,  78].  Ginger,  rich  in
bioactive phytochemicals like gingerol and shogaol, exhibits
antioxidant,  anti-inflammatory,  and hypoglycaemic  proper-
ties. In type 2 diabetic rats, ginger extract improved glucose
and  lipid  profiles,  insulin  sensitivity,  and  oxidative  and
inflammatory  markers  while  reducing  oxidative  damage,
angiogenesis,  and apoptosis  [77].  It  also  enhanced the  ex-
pression  of  eNOS  and  G6PDH.  Similarly,  naringenin,  a
flavonoid,  protected  retinal  endothelial  cells  from  high
glucose-induced  injury  by  reducing  ROS  levels,  inhibiting
apoptosis,  and  promoting  the  release  of  BH4  [78].  Both
compounds  represent  cost-effective  therapeutic  strategies
for addressing diabetic retinal complications.

CONCLUSION
DR  is  a  complex  retinal  disorder  driven  by  oxidative

stress,  nitro-oxidative  imbalance,  and  endothelial  dysfunc-
tion, and exacerbated by hyperglycemia. The role of NO and
its  synthases  (NOS isoforms)  is  central  to  retinal  vascular
regulation, with disruptions contributing to retinal damage.
Emerging  evidence  highlights  the  therapeutic  potential  of
targeting pathways, including NOS modulation, BH4 supple-
mentation,  and  arginase  inhibition,  to  restore  vascular
homeostasis.  Innovative  treatments,  including  NOX  inhi-
bitors,  resveratrol,  and  betulinic  acid,  have  demonstrated
efficacy  in  reducing  oxidative  stress  and  vascular  injury.
Additionally, natural compounds like ginger and naringenin
offer cost-effective strategies for mitigating DR progression.
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These  findings  highlight  the  significance  of  multifaceted
therapeutic  approaches  for  managing  DR.
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